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ABSTRACT

The dynamics model and data sources used herein
to perform air-data reconstruction are discussed,
and a brief discussion of the Kalman filter is
included. The discussion indicates the need for
adaptive determination of the noise statistics of
the process. The filter innovations are presented
as a means of developing the adaptive criterion,
which is based on the estimation of the true mean
and covariance of the filter innovations. A method
for the numerical approximation of the mean and
covariance innovations is presented.

The algorithm as developed is applied to air-
data reconstruction for the space shuttle, and data
obtained from the third landing are presented. To
verify the performance of the adaptive algorithm,
the reconstruction is also Performed using a
constant covariance Kalman filter. The results of
the reconstructions are compared, and the adaptive
algorithm exhibits better performance.

SYMBOLS

A kinematic acceleration of aircraft

b white, Gaussian distributed unity
covariance error in measured system
response

o system geometry matrix, L X M dimen-~
sioned matrix

e filter innovations vector, L x 1
dimensioned

F state-noise gain vector, M x 1 dimen-
sioned

T ; . . :

FF discrete~time state-noise covariance,
M x M dimensioned

f rolloff frequency of low-pass filter
used in dynamics equation

G measurement noisecvector, L x 1

dimensioned

California

GGT measurement noise covariance matrix,
L x L dimensioned

k quantity corresponding to kth sample

L dimensions of measurement vector

M dimensions of state vector

n nonstationary disturbance to state
dynamics

P filter error covariance matrix, M x M
dimensioned

t continuous-time index

v groundspeed state used in dynamics
equation

Vw airspeed state used in dynamics
equation

w windspeed state used in dynamics
equation

X position state used in dynamics
equation

X state vector, M dimensioned

2 measurement vector, L dimensioned

¢ discrete transition matrix, M x M
dimensioned

Mathematical operators:

cov( ) covariance of quantity ( )
dsat( ) derivative of ( ) with respect to
time
E( ) expectation of quantity ( )
s() sample mean of guantity ( )
T
) transpose of ( )

() quantity estimated by filter



Subscripts:

k value of quantity at sample time k

k+1/k indicates quantity resulting from
extrapolation step of filter

k+1/k+1 indicates quantity resulting from
correction step of filter

INTRODUCTION

Accurate estimates of the air data of high-
speed aircraft are essential to successfully per-
form flight research and developmental tasks.
Recent expansions of operational flight envelopes
have necessitated the development of advanced
reconstruction techniques to obtain these esti-
mates. Many of these techniques use a Kalman
filter to merge several data sources to enhance the
result. Most of these methods assume that random
disturbances in the aircraft dynamics can be
accounted for by assuming constant filter statis-
tics which are assumed to be known a priori.
Unfortunately, there is often little physical evi-
dence by which one can determine the statistics of
these random disturbances. In many cases the dis-
turbances are nonstationary; in other words, in
such cases the random disturbances in the aircraft
dynamics can only be described by time-varying sta-
tistics. These cases include such unsteady regimes
as flight in turbulence, high-angle-of-attack
flight, and aerostructural buffet. In such cases,
the statistics of random disturbances are often
selected purely by guesswork. The so-called "opti-
mal” results of such filters are optimal only in
the sense that an error criterion is minimized.

For nonstationary cases, the estimation scheme
must allow for the adaptive estimation of the sta-
tistics that describe random disturbances in the
aircraft dynamics as part of the filter loop. This
paper presents such an algorithm. The algorithm,
although primarily intended for applications to
air-data reconstruction, has applications to a
variety of other fields. Because the space shuttle
is known to encounter several or all of the above-
mentioned unsteady flight conditions during its
reentry, space shuttle reentry data are used to
verify the resulting algorithm.

ESTIMATION CONCEPT

The estimation problem is essentially one of
complementary filtering. Data from four indepen-
dent measurement sources are merged by means of the
filtering algorithm to give an enhanced result.

The data sources include high-, medium-, and low-
frequency data. The high-frequency data are pro-
vided by a strapdown linear accelerometer package;
the medium-frequency data are provided by a pair of
pneumatic hemispherical air-data sensors and C-band
radar tracking; and the low-frequency data are pro-
vided by a meteorological analysis of the atmos-
pheric conditions. The air data are complementary
to and blended with the meteorological data; the
accelegation data are complementary to and blended

with the tracking data. These are in turn com-
bined to give enhanced estimates of the aircraft
position, groundspeed, windspeed, and airspeed.
The resulting estimates possess characteristics of
all four measurement sources. A schematic of this

~ concept is presented in Fig. 1. Each of the data

sources is described in detail in the INFORMATION
SOURCES section.

INFORMATION SOURCES
Tracking Data

Radar tracking data are obtained from a skin
track using an FPS-16, C-band, high-range tracking
system (Ref. 1). Provided are highly accurate,
medium-frequency measurements of the aircraft's
range, azimuth, and elevation relative to the radar
site. The tracking data were recorded at 20 Hz and
interpolated to 25 Hz.

Meteorological Data

Steady-state meteorologically derived wind and
barometric data are used to provide accurate but
very low frequency information concerning the dyna-
mics of the atmosphere along the reentry flight-
path. The data are obtained by a series of weather
balloons launched at various times and locations
along the anticipated flightpath. The raw data
thus obtained were corrected for diurnal and spa-
tial variations (Ref. 2). Examination of time and
altitude variations in the data gives indications
of both the steady-state magnitude and the turbul-
ence in the winds aloft. The meterological data
were interpolated to 25 Hz using radar position
data.

Air-Data Measurements

The air-data measurements are obtained from
a pair of side-mounted hemispherical pneumatic
sensor (Ref. 2). In addition to sensing turbu-
lence and compression caused by the local flow
field, the sensors are subject to pneumatic lag.
These factors are manifested as nonstationary
disturbances. The hemispherical sensor data are
recorded at 12.5 Hz and interpolated to 25 Hz.

Strapdown Linear Accelerometer Data

High-frequency data concerning the aircraft's
inertial dynamics are provided by an onboard,
strapdown, linear accelerometer package (Ref. 2).
The accelerometer package, intended for aerodynamic
coefficient identification, provides very high fre-
quency measurements. The package, however, is not
inertial quality and is subject to significant bias
errors. Thus resulting data cannot be integrated
open loop. The strapdown data were rotated to
earth-relative topodetic coordinates before use in
the filter. The direction cosines used in perform-
ing the rotation were obtained directly from the
shuttle's inertial measurement unit (Ref. 3).

After rotation, the acceleration of gravity as a
function of' altitude was added to the vertical
component. The strapdown data are recorded at
176.8 Hz and decimated to 25 Hz.



FILTER EQUATIONS

The discrete-time form of the Kalman filter
was used as the starting point for developing the
algorithm. The filter as mechanized consists of
three parallel filters, one for each topodetic axis
component. The topodetic axis system (Fig. 2) is
defined so as to have its x-axis directed northward
with respect to the local horizon, the y-axis
directed eastward, and the z-axis directed toward
the center of the earth. Each component filter was
assumed to have four states: aircraft position,
groundspeed, windspeed, and true airspeed. The
dynamics equations, although continuous time, are
easily discretized by transition matrix integra-
tion. The matrix equation chosen to describe the
process dynamics is

x o 1 o o % 0
v o o o o v 1
el =lo -£ - ¢ w/|*|ofp O
v, 0 ~f -f £ W 1
+ F(t) n(t)

The relationships of the states to the measured
data are

T2 QX

X 1 1] 0 0
Vwl=1]0 172 1/2 1/2 (1b)

W 0 -1/2 1/2 1/2 Vv

+ G(t) b(t)c

In Eqs. (1a) and (1b), the parameter f repre-
sents a first-order low-pass filter rolloff fre-
quency. This parameter affects only the windspeed
and airspeed components of the filter. The low-
pass filter terms are chosen so as to insure that
the resulting windspeed and airspeed terms will be
smooth. '

The function n(t) represents a nonstationary
random disturbance in the process at time t. It
is assumed that the model of Eq. (1ta) adequately
accounts for all systematic aircraft dynamics; as
a result, n(t) is assumed to be zero mean. The
vector F(t), a four-element vector, is used to
describe the relative effect of random disturbances
occurring at time t on each of the states. Since
n(t) is assumed to be zero mean, the vector product
of F with itself is assumed to approximate the
covariance of the random disturbances at time t.
Consequently, it is the vector product of F with
itself that must be identified by means of the
adaptive criterion developed in the ADAPTATION
CRITERION section.

The function b(t) represents an error in the
measurement vector at time t. This quantity is
assumed to be locally stationary (that is, it has
statistics that vary slowly with time), and it has
a nonzero mean. The vector G(t), a three-element

vector, is used to describe the respective ampli-
tudes of the errors in each measurement at time t.
The elements of G(t) are essentially measurement

weighting factors. As a part of the adaptive
algorithm presented in the ESTIMATION OF INNO-
VATIONS MEAN section, the bias errors in the
measured data are estimated and compensated for.
For this reason, the vector product of G(t) with
itself is assumed to approximate the covariance of
the measurement errors at time t.

The first element of G(t) is used to weight the
errors that are expected to occur in the radar-
derived position data. Radar position errors are
known to become significant for elevation angles of
less than 10°. For this reason the first element
of G(t) is prescribed to decrease linearly with
increasing elevation angle until elevation angle
reaches 10°. At elevation angles greater than 10°,
the first element of G(t) is held constant. For
elevation angles less than 0°, the value of the
first element of G(t) is fixed at 1. A schematic
of this weighting scheme is presented in Fig. 3(a).

The second element of G(t) is used to weight
the expected errors in the hemispherical sensor-
derived airspeed data. Hemispherical sensor data
are known to become poor at high angles of attack.
Consequently, for angles of attack greater than
10°, the second element of G(t) is prescribed to
increase linearly with angle of attack. For angles
of attack less than 10°, the weighting is held
constant at 1. A schematic of this weighting
scheme is depicted in Fig. (3b).

The third element of G(t) is used to weight the
expected errors in the meteorclogically derived
windspeed data. Because little precise information
is available regarding the accuracy of these
measurments, these data are considered to be
equally accurate throughout the flight envelope.
For this reason, the third element of G(t) is held
constant at 1.

ADAPTATION CRITERION

As mentioned previously, the statistics of the
random disturbances in the process dynamics are
assumed to vary as a function of time. For this
reason, we must develop an adaptive criterion by
which these statistics can be éstimated. The adap-
tive scheme discussed in this paper uses infor-
mation provided by the filter error vector. The
error vector ig defined as the difference between
the measured system response and the expected
system response. This vector, ex4q, is also called

the filter innovations, which is the name used
henceforth. The statistics of the filter innova-
tions tell a great deal about how well the filter
model is performing. Because of the assumptions
used in deriving the discrete Kalman filter, the
innovations should be a purely white, Gaussian-
distributed, zero-mean sequence. If such is the
case, then one can be fairly confident that the
filter model is correct and that the resulting
estimates are close to optimal (Ref. 4). If this
is not the case, then the parameters of the filter
model are in error and information provided by the

innovations can be used to drive the assumed model
toward the correct model. This process ig depicted
in Fig. 4.



ESTIMATION OF INNOVATIONS MEAN

The Kalman filter is an unbiased estimator;
consequently, for unbiased measurements, the mean
of the innovations should be exactly zero (Ref. 5).
1f, however, there are biases in the measurements,
the mean of the innovations will equal the expected
bias error in the measurements. Measurement bias
errors do not usually change rapidly with time, and
for this reason the true mean can be approximated
by sampled statistics. The sample mean can be
allowed to change slowly with time by taking the
time average over only a fairly local region. The
time-averaged estimate of the bias error S{ex}, can
be recursively subtracted from the measurement vec-
tor to form a transformed measurement vector that
is nearly unbiased. Using this transformed vector,
the estimation algorithm proceeds as in the stan-
dard Kalman filter.

ESTIMATION OF THE INNOVATIONS COVARIANCE

The negation of the approximate biases from the
measurement vector allows for considerable simpli-
fication of the adaptive process; the problem redu-
ces to one of estimating the mean square of the
innovations. This quantity is estimated in the
following manner: The actual system response is
given to be related to the system states by some
geometry matrix, C, and an error term, b(t); that
is,

zx = Cy + Gxby (2a)
Therefore, the expected system response is given by
zy = Cxy (2b)

As a result (remembering that biases have been

removed), the innovations covariance is described
by

cov(ex) = E(zx - Cxe/x-1) (2 = Coe/x-1)” (32

Substituting in Eq. (2a) for z gives

cov(ex) = E[C(xk - X x-1) + Gknk][c(xk

T
- X /k-1) Gk“k]
Now, since the measurement noise is assumed to be

white and all biases have been previously removed,
the previous expression reduces to

cov(ek) = c:;(xk - xk/k-‘l) (xx - "k/k-1)TCT . GGE

From the definition for the filter error covariance
matrix,

Pr/k-1 = E(xx = xcm-1) (*x - xk/k-1)T

we get

cov (ex) = CPy/x-1 c? + aop (3b)

The quantity COV ex is computed as a part of
the gain expression in the standard implementation
of the discrete Kalman filter. Conveniently, using
the previously stated assumptions, the covariance
of the innovation is available for use with no
additional computational expense.

ADAPTIVE COMPUTATION OF THE
STATE-NOISE COVARIANCE

For the standard formulation of the discrete
Kalman filter, the state-noise covariance extrap-
olation step is given by

Prot/x = WPy i O + FFy (42)

where FF§ is the state-noise covariance and ¢
is the system transition matrix. Substituting
Eq. (4a) into Eq. (3b) and rearranging gives

CFRRCT = cov(ex) - C(OPk_1/k_1 OT)c - GG  (4b)

If the geometry matrix, Cx, is square and non-
singular, we can solve for the state-noise covari-
ance matrix directly. If the number of measure-
ments does not equal the number of states, we can
expand the matrix equation to form a set of L
scalar equations in M(M - 1) unknowns, where L is
the number of measurements and M is the number of
states. We then must assume that the off-diagonal
elements of the covariance matrix are insignifi-
cant, and the covariance matrix is essentially
diagonal. This allows us to solve directly for L
of the diagonal elements in the state-noise covari-
ance matrix. In the case of Eq. (1), we can solve
directly for the first, second, and fourth diagonal
elements; the remaining element canr be solved for
by considering that by definition

Vw =V + W (4c)

from which we reason that the third diagonal ele-
ment is simply the sum of the second and fourth
diagonal elements. Equation (4b) can now be imple-
mented as a part of the filter loop to give a
closed-loop estimate of the covariance of random
disturbances in the aircraft dynamics.

PRESENTATION OF ADAPTIVE TECHNIQUE

The adaptive algorithm is presented in schema-
tic form in Fig. 5. The portion of Fig. 5 that
lies outside the dashed line represents the process
dynamics; the portion that lies inside the dashed
line represents the estimation loop. The arrows
depict the flow of information through the filter.
The state-noise covariance is computed by means of
Eq. 4 as a part of the recursion of the filter.

APPLICATION OF ALGORITHM TO TRAJECTORY
RECONSTRUCTION PROBLEM

As a verification of its validity, the adaptive

algorithm is now applied to the problem of air-data
reconstruction. Data obtained from the third space



shuttle reentry (STS-3) are chosen to illustrate
the problem. The STS-3 landing at White Sands, New
Mexico, occurred on a worst-case day. Extremely
high winds and moderate-to-severe turbulence were
known to exist. Examination of landing~day rawin-
sonde and Jimsphere balloon data provided by the
Air Force Flight Test Center at Edwards AFB indi-
cated that jetstream velocities were measured in
excess of 150 knots. The Jimsphere balloon was
observed to have rise-rate oscillations that varied
from 0 to 10 ft/sec. These wind conditions
extended throughout the troposphere and the lower
stratosphere. Because of these conditions, the
vertical wind component was subject to greater ran-
dom variation than has been experienced during any
of the other space shuttle reentries. The condi-
tions are suggestive of mountain gravity wave
activity. Analytical solutions documented in

Ref. 2 also suggest that this is the case. Such
conditions are known to produce highly nonstation=
ary disturbances (Refs. 2 and 6).

The air-data reconstruction was performed
using the adaptive algorithm with arbitrary initial
covariances assumed for the state disturbances.

The measurement error covariances were chosen based
upon the prescribed methods mentioned earlier. To
verify the effectiveness of the adaptive algorithm,
the air-data reconstruction was also performed
using a standard implementation of the discrete
Kalman filter. The standard implementation was
performed using the same initial covariances as
above; however, in this case both the state distur-
bance and measurement error covariances were held
constant.

The results of the adaptive case are presented
in Fig. 6. Presented are comparisons of the
measured and reconstructed time histories of air-
speed (Fig. 6(a)), vertical windspeed (Fig. 6(b)),
and total horizontal windspeed (Fig. (6¢)). Esti-
mates of these quantities are the most heavily
affected by time variations in random atmospheric
disturbances. Inertial type quantities such as
position and groundspeed are less heavily affected.
The results show no significant discrepancies
between the measured and estimated values. Con-
sidering the fact that mountain wave activity was
believed to exist, the vertical windspeeds,
although large, are within believable limits. As
expected, the filtered estimates exhibit higher
frequencies than do the meteoroclogical winds.

The results of the nonadaptive estimates are
presented in Fig. 7, and similar comparisons are
made. These comparisons show significant discre-
pancies. The estimates of airspeed and horizontal
windspeed differ by more than 100 ft/sec. It is
not believed that the meteorological estimates
could have been this much in error. The verti-
cal wind estimate reaches a peak value of nearly
60 ft/sec downdraft. Had these conditions actually
occurred, it is doubtful that the reentering space
shuttle could have cleared the lofty San Andreas

Mountains that border the S$TS-3 landing site. 1In
Fig. 7 it is interesting to note that the behavior
of the standard filter becomes more realistic
toward the end of the time histories. These data
correspond to data that were obtained just before
landing and several minutes after the shuttle had
dropped below the regions of heavy turbulence and
mountain wave activity. Under these conditions the
disturbances dropped to nearly zero and no adaptive
estimation of the covariances of the disturbances
were necessary.

CONCLUDING REMARKS

An adaptive algorithm that can be used to
estimate the state-noise covariance for certain
types of nonstationary processes has been deve-
loped. The algorithm, which was developed pri-
marily for the purpose of air-data reconstruction,
accounts for improper knowledge of the state-
disturbance covariance matrix and, to some extent,
accounts for unknown measurement biases. The algo-
rithm is recursive and has the potential for real-
time implementation. Because the adaptation cri-
terion was formulated in a general sense, it has
applications to fields other than air-data
reconstruction.

An air-data reconstruction problem for the
space shuttle is used to demonstrate the applica-
tion of the algorithm. The algorithm exhibits
superior performance as compared with a standard
implementation of the discrete Kalman filter. The
algorithm has poteﬁtial for solving many types of
nonstationary estimation problems for which the
standard implementation of the Kalman filter is
unsuited.
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